题目内容
【题目】我县某公司参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐助给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量 (单位:个)与销售单价 (单位:元/个)之间的关系式为.
(1) 若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润 (单位:元)与销售单价 (单位:元/个)之间的函数关系式;
(2) 在(1)问的条件下,若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.
【答案】(1) ;(2)销售单价定为每个15元时,利润最大为1350元.
【解析】试题分析:(1)利用w=销量×每个利润,进而得出函数关系式;
(2)利用进货成本不超过900元,得出x的取值范围,进而得出函数最值.
试题解析:解:(1)由题意得:w=(x﹣6)(﹣30x+600)=﹣30x2+780x﹣3600,∴w与x的函数关系式为w=﹣30x2+780x﹣3600;
(2)由题意得:6(﹣30x+600)≤900,解得:x≥15,在w=﹣30x2+780x﹣3600中,对称轴为:x=﹣=13.∵a=﹣30,∴当x>13时,w随x的增大而减小,∴x=15时,w最大为:(15﹣6)(﹣30×15+600)=1350,∴销售单价定为每个15元时,利润最大为1350元.
【题目】随着气温的升高,空调的需求量大增.某家电超市对每台进价分别为2000元、1700元的、两种型号的空调,近两周的销售情况统计如下:
销售时段 | 销售量 | 销售收入 | |
型号 | 型号 | ||
第一周 | 6台 | 7台 | 31000元 |
第二周 | 8台 | 11台 | 45000元 |
(1)求、两种型号的空调的销售价;
(2)若该家电超市准备用不多于54000元的资金,采购这两种型号的空调30台,求种型号的空调最多能采购多少台?
(3)在(2)的条件下,该家电超市售完这30台空调能否实现利润不低于15800元的目标?若能,请给出采购方案.若不能,请说明理由.