题目内容
【题目】如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.
(1)求线段CD的长;
(2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长;
(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.
【答案】
(1)
解:作DH⊥AB于H,如图1,
易得四边形BCDH为矩形,
∴DH=BC=12,CD=BH,
在Rt△ADH中,AH= = =9,
∴BH=AB﹣AH=16﹣9=7,
∴CD=7
(2)
解:当EA=EG时,则∠AGE=∠GAE,
∵∠AGE=∠DAB,
∴∠GAE=∠DAB,
∴G点与D点重合,即ED=EA,
作EM⊥AD于M,如图1
,
则AM= AD= ,
∵∠MAE=∠HAD,
∴Rt△AME∽Rt△AHD,
∴AE:AD=AM:AH,即AE:15= :9,解得AE= ;
当GA=GE时,则∠AGE=∠AEG,
∵∠AGE=∠DAB,
而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,
∴∠GAE=∠ADG,
∴∠AEG=∠ADG,
∴AE=AD=15,
综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为 或15
(3)
解:作DH⊥AB于H,如图2
,
则AH=9,HE=AE﹣AH=x﹣9,
在Rt△ADE中,DE= = ,
∵∠AGE=∠DAB,∠AEG=∠DEA,
∴△EAG∽△EDA,
∴EG:AE=AE:ED,即EG:x=x: ,
∴EG= ,
∴DG=DE﹣EG= ﹣ ,
∵DF∥AE,
∴△DGF∽△EGA,
∴DF:AE=DG:EG,即y:x=( ﹣ ): ,
∴y= (9<x< ).
【解析】(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,则DH=BC=12,CD=BH,再利用勾股定理计算出AH,从而得到BH和CD的长;(2)分类讨论:当EA=EG时,则∠AGE=∠GAE,则判断G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM= AD= ,通过证明Rt△AME∽Rt△AHD,利用相似比可计算出此时的AE长;当GA=GE时,则∠AGE=∠AEG,可证明AE=AD=15,(3)作DH⊥AB于H,如图2,则AH=9,HE=AE﹣AH=x﹣9,先利用勾股定理表示出DE= ,再证明△EAG∽△EDA,则利用相似比可表示出EG= ,则可表示出DG,然后证明△DGF∽△EGA,于是利用相似比可表示出x和y的关系. 本题考查了四边形的综合题:熟练掌握梯形的性质等等腰三角形的性质;常把直角梯形化为一个直角三角形和一个矩形解决问题;会利用勾股定理和相似比计算线段的长;会运用分类讨论的思想解决数学问题.
【考点精析】根据题目的已知条件,利用直角梯形的相关知识可以得到问题的答案,需要掌握一腰垂直于底的梯形是直角梯形.