题目内容

【题目】已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.
(1)求证:AB=AC;
(2)若AB=4,BC=2 ,求CD的长.

【答案】
(1)证明:∵ED=EC,

∴∠EDC=∠C,

∵∠EDC=∠B,

∴∠B=∠C,

∴AB=AC;


(2)方法一:

解:连接AE,

∵AB为直径,

∴AE⊥BC,

由(1)知AB=AC,

∴BE=CE= BC=

∵△CDE∽△CBA,

∴CECB=CDCA,AC=AB=4,

2 =4CD,

∴CD=

方法二:

解:连接BD,

∵AB为直径,

∴BD⊥AC,

设CD=a,

由(1)知AC=AB=4,

则AD=4﹣a,

在Rt△ABD中,由勾股定理可得:

BD2=AB2﹣AD2=42﹣(4﹣a)2

在Rt△CBD中,由勾股定理可得:

BD2=BC2﹣CD2=(2 2﹣a2

∴42﹣(4﹣a)2=(2 2﹣a2

整理得:a=

即:CD=


【解析】(1)由等腰三角形的性质得到∠EDC=∠C,由圆外接四边形的性质得到∠EDC=∠B,由此推得∠B=∠C,由等腰三角形的判定即可证得结论;(2)连接AE,由AB为直径,可证得AE⊥BC,由(1)知AB=AC,证明△CDE∽△CBA后即可求得CD的长.
【考点精析】本题主要考查了勾股定理的概念和圆周角定理的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网