题目内容
【题目】如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为( )时,△ABE与以D、M、N为顶点的三角形相似.
A.
B.
C. 或
D. 或
【答案】C
【解析】解:∵四边形ABCD是正方形,
∴AB=BC,
∵BE=CE,
∴AB=2BE,
又∵△ABE与以D、M、N为顶点的三角形相似,
∴①DM与AB是对应边时,DM=2DN
∴DM2+DN2=MN2=1
∴DM2+ DM2=1,
解得DM= ;
②DM与BE是对应边时,DM= DN,
∴DM2+DN2=MN2=1,
即DM2+4DM2=1,
解得DM= .
∴DM为 或 时,△ABE与以D、M、N为顶点的三角形相似.
故答案为:C.
根据正方形的性质,由四边形ABCD是正方形,得到AB=BC,E为中点,得到AB=2BE,又△ABE与以D、M、N为顶点的三角形相似,所以①DM与AB是对应时,DM=2DN,根据勾股定理得到DM2+DN2=MN2,DM2+ DM2,求出DM;②DM与BE是对应边时,DM= DN,由勾股定理得到DM2+DN2=MN2,即DM2+4DM2,求出DM,得出结论△ABE与以D、M、N为顶点的三角形相似.
练习册系列答案
相关题目