题目内容
【题目】数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A,B在数轴上分别对应的数为a,b(a<b),则AB的长度可以表示为AB=b-a.
请你用以上知识解决问题:
如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.
(1)请你在图②的数轴上表示出A,B,C三点的位置.
(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.
①当t=2时,求AB和AC的长度;
②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
【答案】(1)详见解析;(2)①16;②在移动过程中,3AC﹣4AB的值不变
【解析】
(1)根据点的移动规律在数轴上作出对应的点即可;
(2)①当t=2时,先求出A、B、C点表示的数,然后利用定义求出AB、AC的长即可;
②先求出A、B、C点表示的数,然后利用定义求出AB、AC的长,代入3AC-4AB即可得到结论.
(1)A,B,C三点的位置如图所示:
.
(2)①当t=2时,A点表示的数为-4,B点表示的数为5,C点表示的数为12,∴AB=5-(-4)=9,AC=12-(-4)=16.
②3AC-4AB的值不变.
当移动时间为t秒时,A点表示的数为-t-2,B点表示的数为2t+1,C点表示的数为3t+6,则:AC=(3t+6)-(-t-2)=4t+8,AB=(2t+1)-(-t-2)=3t+3,∴3AC-4AB=3(4t+8)-4(3t+3)=12t+24-12t-12=12.
即3AC﹣4AB的值为定值12,∴在移动过程中,3AC﹣4AB的值不变.