题目内容
【题目】已知四边形ABCD的对角线相交于O,给出下列 5个条件:①AB∥CD ;②AD∥BC;③AB=CD ;④∠BAD=∠BCD;⑤OA=OC.从以上5个条件中任选 2个条件为一组,能推出四边形ABCD为平行四边形的有( )
A. 4组 B. 5组 C. 6组 D. 7组
【答案】C
【解析】
有①与②,①与③,①与④,①与⑤,②与④,②与⑤,
①与②根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;
①与③根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;
①与④,②与④根据两组对角分别相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;
①与⑤,②与⑤根据对角线互相平分的四边形是平行四边形,能推出四边形ABCD为平行四边形.
所以能推出四边形ABCD为平行四边形的有6组.
故选C.
练习册系列答案
相关题目
【题目】某中学举行“校园好声音”歌手大赛,初、高中部根据初赛成绩,各选出名选手组成初中代表队和高中代表队参加学校决赛.每个队名选手的决赛成绩如图所示:
填表:
平均数(分) | 中位数(分) | 众数(分) | |
初中代表队 | |||
高中代表队 |
结合两队决赛成绩的平均数和中位数,分析哪个代表队的成绩较好;
计算两队决赛成绩的方差,并判断哪个代表队的成绩较为稳定.