题目内容

【题目】如图是由边长为1的小正三角形组成的网格图,点O和△ABC的顶点都在正三角形的格点上,将△ABC绕点O逆时针旋转120°得到△A′B′C′.

(1)在网格中画出旋转后的△A′B′C′;
(2)求AB边旋转时扫过的面积.

【答案】
(1)

解:如图,△A′B′C′为所作;


(2)

解:AB边旋转时扫过的面积=S扇形BOB′﹣S扇形AOA′

=

=π.


【解析】(1)利用网格特点、等边三角形的性质和旋转的性质画出点A、B、C的对应点A′、B′、C,从而得到△A′B′C′;(2)根据扇形的面积公式,利用AB边旋转时扫过的面积=S扇形BOB′﹣S扇形AOA′进行计算即可.
【考点精析】通过灵活运用旋转的性质,掌握①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网