题目内容
【题目】如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.
(1)求m的值和反比例函数的表达式;
(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?
【答案】(1)m=8,反比例函数的解析式为y=;(2)n=3时,△BMN的面积最大.
【解析】试题分析:(1)求出点A的坐标,利用待定系数法即可解决问题;
(2)构造二次函数,利用二次函数的性质即可解决问题.
试题解析:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),
∵反比例函数经过点A(1,8),∴8=,∴k=8,∴反比例函数的解析式为y=.
(2)由题意,点M,N的坐标为M(,n),N(,n),
∵0<n<6,
∴<0,
∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,
∴n=3时,△BMN的面积最大.
练习册系列答案
相关题目