题目内容
如图,已知△ABC中,∠ABC=3∠C,∠A的平分线AD交BC于D,BP⊥AD于P.
求证:BP=(AC-AB).
证明:因为∠A的平分线AD交BC于D,BP⊥AD,所以△ABE为等腰三角形,所以AE=AB
设∠AEB=z度,∠EBC=y度,∠C=x度,则∠ABC=3x度
于是z=x+y,z=3x-y
整理得x=y,则BE=CE
于是BP=PE=BE=EC=(AC-AE)=(AC-AB).
分析:先根据∠A的平分线AD交BC于D,BP⊥AD于P推出△ABE为等腰三角形,再证明△BEC是等腰三角形即可顺利得出结论.
点评:此题巧妙利用了等腰三角形的两底角相等、两腰相等、三线合一等性质,是一道好题;得到∠C=∠EBC是正确解答本题的关键.
设∠AEB=z度,∠EBC=y度,∠C=x度,则∠ABC=3x度
于是z=x+y,z=3x-y
整理得x=y,则BE=CE
于是BP=PE=BE=EC=(AC-AE)=(AC-AB).
分析:先根据∠A的平分线AD交BC于D,BP⊥AD于P推出△ABE为等腰三角形,再证明△BEC是等腰三角形即可顺利得出结论.
点评:此题巧妙利用了等腰三角形的两底角相等、两腰相等、三线合一等性质,是一道好题;得到∠C=∠EBC是正确解答本题的关键.
练习册系列答案
相关题目