题目内容
【题目】如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为S,则四边形ABCE的面积为( )
A. 8S B. 9S C. 10S D. 11S
【答案】B
【解析】分析:由于四边形ABCD是平行四边形,那么AD∥BC,AD=BC,根据平行线分线段成比例定理的推论可得△DEF∽△BCF,再根据E是AD中点,易求出相似比,从而可求的面积,再利用与是同高的三角形,则两个三角形面积比等于它们的底之比,从而易求的面积,进而可求的面积.
详解:如图所示,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴△DEF∽△BCF,
∴
又∵E是AD中点,
∴
∴DE:BC=DF:BF=1:2,
∴
∴
又∵DF:BF=1:2,
∴
∴
∴四边形ABCE的面积=9S,
故选B.
练习册系列答案
相关题目