题目内容
【题目】如图,在边长为6的正方形ABCD中,点E为AD边上的一个动点(与点A、D不重合),∠EBM=45°,BE交对角线AC于点F,BM交对角线AC于点G、交CD于点M.
(1)如图1,联结BD,求证:,并写出的值;
(2)联结EG,如图2,若设,求y关于的函数解析式,并写出函数的定义域;
(3)当M为边DC的三等分点时,求的面积.
【答案】;;或
【解析】
(1)根据正方形的性质得到∠EDB=∠GCB=45°,∠ABD=∠CBD=45°,根据相似三角形的判定定理证明即可;
(2)作EH⊥AC于H,根据等腰直角三角形的性质、勾股定理和相似三角形的性质得到y关于x的函数解析式;
(3)分CM=CD和CM=CD两种情况,根据相似三角形的性质解答即可.
(1)证明:∵四边形ABCD是正方形,
∴∠EDB=∠GCB=45°,∠ABD=∠CBD=45°,又∠EBM=45°,
∴∠GBC+∠DBM=45°,∠EBD+∠DBM=45°,
∴∠GBC=∠EBD,又∠EDB=∠GCB=45°,
∴△DEB∽△CGB,
∴DE:CG=BD:BC=;
(2)如图2,作EH⊥AC于H,
则AH=EH=x,
∵△DEB∽△CGB,
∴,
∴CG=(6x),
∴HG=ACAHCG=3,
∵EG2=EH2+HG2,
∴;
(3)当CM=CD=2时,
∵四边形ABCD是正方形,
∴CD∥AB,
∴,
∴CG=,
∴DE=3,则AE=3,
∴AH=EH=,
∵AD∥BC,
∴,
∴AF=2,
∴GF=ACAFCG=,
∴S△EGF=×FG×EH=,
当CM=CD=4时,
,
∴CG=,
∴DE=,则AE=,
AH=EH=,
∵,
∴AF=,
∴GF=ACAFCG=,
∴S△EGF=×FG×EH=.
综上,S△EGF=或
【题目】某商场的运动服装专柜,对两种品牌的远动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.
第一次 | 第二次 | |
品牌运动服装数/件 | 20 | 30 |
品牌运动服装数/件 | 30 | 40 |
累计采购款/元 | 10200 | 14400 |
(1)问两种品牌运动服的进货单价各是多少元?
(2)由于品牌运动服的销量明显好于品牌,商家决定采购品牌的件数比品牌件数的倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件品牌运动服?