题目内容
【题目】问题背景
(1)如图1,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点E作EF∥AB交BC于点F.请按图示数据填空:
四边形DBFE的面积 ,
△EFC的面积 ,
△ADE的面积 .
探究发现
(2)在(1)中,若,,DE与BC间的距离为.请证明.
拓展迁移
(3)如图2,□DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为2、5、3,试利用(2)中的结论求△ABC的面积.
【答案】(1),,
(2)略
(3)18
【解析】
(1),,.……3分
(2)证明:∵DE∥BC,EF∥AB,
∴四边形DBFE为平行四边形,,.
∴△ADE∽△EFC.……4分
∴.
∵, ∴.……5分
∴.
而, ∴……6分
(3)解:过点G作GH∥AB交BC于H,则四边形DBHG为平行四边形.
∴,,.
∵四边形DEFG为平行四边形,
∴. ∴.
∴. ∴△DBE≌△GHF.
∴△GHC的面积为.……8分
由(2)得,□DBHG的面积为.……9分
∴△ABC的面积为.……10分
(说明:未利用(2)中的结论,但正确地求出了△ABC的面积,给2分)
练习册系列答案
相关题目
【题目】为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:
捐款的数额(单位:元) | 5 | 10 | 20 | 50 | 100 |
人数(单位:个) | 2 | 4 | 5 | 3 | 1 |
关于这15名同学所捐款的数额,下列说法正确的是
A.众数是100 B.平均数是30 C.极差是20 D.中位数是20