题目内容

【题目】关于x的方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1 , x2 , 且x12+x22=3,则m=

【答案】0
【解析】解:∵方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1 , x2 , ∴x1+x2=2m﹣1,x1x2=m2﹣1,
∵x12+x22=(x1+x22﹣2x1x2=(2m﹣1)2﹣2(m2﹣1)=3,
解得:m1=0,m2=2,
∵方程有两实数根,
∴△=(2m﹣1)2﹣4(m2﹣1)≥0,
即m≤
∴m2=2(不合题意,舍去),
∴m=0;
所以答案是:0.
【考点精析】掌握求根公式和根与系数的关系是解答本题的根本,需要知道根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根;一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网