题目内容

【题目】如图,已知ED为⊙O的直径且ED=4,点A(不与E、D重合)为⊙O上一个动点,线段AB经过点E,且EA=EB,F为⊙O上一点,∠FEB=90°,BF的延长线交AD的延长线交于点C.
(1)求证:△EFB≌△ADE;
(2)当点A在⊙O上移动时,直接回答四边形FCDE的最大面积为多少.

【答案】
(1)解:连接FA,

∵∠FEB=90°,

∴EF⊥AB,

∵BE=AE,

∴BF=AF,

∵∠FEA=∠FEB=90°,

∴AF是⊙O的直径,

∴AF=DE,

∴BF=ED,

在Rt△EFB与Rt△ADE中,

∴Rt△EFB≌Rt△ADE;


(2)∵Rt△EFB≌Rt△ADE,

∴∠B=∠AED,

∴DE∥BC,

∵ED为⊙O的直径,

∴AC⊥AB,

∵EF⊥AB,

∴EF∥CD,

∴四边形形FCDE,

∴E到BC的距离最大时,四边形FCDE的面积最大,

即点A到DE的距离最大,

∴当A为 的中点时,

点A到DE的距离最大是2,

∴四边形FCDE的最大面积=4×2=8.


【解析】(1)连接FA,根据垂直的定义得到EF⊥AB,得到BF=AF,推出BF=ED,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到∠B=∠AED,得到DE∥BC,推出四边形形FCDE,得到E到BC的距离最大时,四边形FCDE的面积最大,即点A到DE的距离最大,推出当A为 的中点时,于是得到结论.
【考点精析】本题主要考查了二次函数的最值和圆周角定理的相关知识点,需要掌握如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网