题目内容
【题目】已知,正方形ABCD,∠EAF=45°,
(1)如图1,当点E,F分别在边BC,CD上,连接EF,求证:EF=BE+DF;
(2)如图2,点M,N分别在边AB,CD上,且BN=DM,当点E,F分别在BM,DN上,连接EF,请探究线段EF,BE,DF之间满足的数量关系,并加以证明;
(3)如图3,当点E,F分别在对角线BD,边CD上,若FC=2,则BE的长为 .
【答案】(1)见解析;(2)EF2=BE2+DF2 ;理由见解析;(3)
【解析】
(1)如图1中,将△ADF绕点A顺时针旋转90°,得△ABG,想办法证明△EAG≌△EAF(SAS).
(2)结论:EF2=BE2+DF2,将△ADF绕点A顺时针旋转90°,得△ABH,(如图2)证明过程跟(1)类似,证得△EAH≌△EAF,把EF转化到EH,然后利用BN=DM证明四边形BMDN为平行四边形得∠ABE=∠FDM,得∠EBH=∠ABH+∠ABE=∠ADF+∠MDN=90°,由EH2=BE2+BH2得EF2=BE2+DF2.
(3)作△ADF的外接圆⊙O,连接EF、EC,过点E分别作EM⊥CD于M,EN⊥BC于N(如图3).想办法证明EF=FC,即可推出封门村吗,证明EN=CM即可.
(1)证明:如图1中,将△ADF绕点A顺时针旋转90°,得△ABG,
∴△ADF≌△ABG,
∴AF=AG,DF=BG,∠DAF=∠BAG,
∵正方形ABCD,
∴∠D=∠BAD=∠ABE=90°,AB=AD,
∴∠ABG=∠D=90°,即G、B、C在同一直线上,
∵∠EAF=45°,
∴∠DAF+∠BAE=90°﹣45°=45°,
∴∠EAG=∠BAG+∠BAE=∠DAF+∠BAE=45°,
即∠EAG=∠EAF,
∴△EAG≌△EAF(SAS),
∴EG=EF,
∵BE+DF=BE+BG=EG,
∴EF=BE+DF.
(2)结论:EF2=BE2+DF2,
理由:将△ADF绕点A顺时针旋转90°,得△ABH,(如图2)
∴△ADF≌△ABH,
∴AF=AH,DF=BH,∠DAF=∠BAH,∠ADF=∠ABH,
∵∠EAF=45°,
∴∠DAF+∠BAE=90°﹣45°=45°,
∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=45°,
即∠EAH=∠EAF,
∴△EAH≌△EAF(SAS),
∴EH=EF,
∵BN=DM,BN∥DM,
∴四边形BMDN是平行四边形,
∴∠ABE=∠MDN,
∴∠EBH=∠ABH+∠ABE=∠ADF+∠MDN=∠ADM=90°,
∴EH2=BE2+BH2,
∴EF2=BE2+DF2,
(3)作△ADF的外接圆⊙O,连接EF、EC,过点E分别作EM⊥CD于M,EN⊥BC于N(如图3).
∵∠ADF=90°,
∴AF为⊙O直径,
∵BD为正方形ABCD对角线,
∴∠EDF=∠EAF=45°,
∴点E在⊙O上,
∴∠AEF=90°,
∴△AEF为等腰直角三角形,
∴AE=EF,
∴△ABE≌△CBE(SAS),
∴AE=CE,
∴CE=EF,
∵EM⊥CF,CF=2,
∴CM= CF=1,
∵EN⊥BC,∠NCM=90°,
∴四边形CMEN是矩形
∴EN=CM=1,
∵∠EBN=45°,
∴BE=EN= .
故答案为: