题目内容

【题目】如图,点A02),在x轴上取一点B,连接AB,以A为圆心,任意长为半径画弧,分别交OAAB于点MN,再以MN为圆心,大于MN的长为半径画弧,两弧交于点D,连接AD并延长交x轴于点P.若OPAOAB相似,则点P的坐标为(  )

A. 10B. 0C. 0D. 20

【答案】C

【解析】

根据点D的画法可得出AD平分∠OAB,由角平分线的性质结合相似三角形的性质可得出∠OBAOAB,利用二角互补即可求出∠OBA=∠OAP30°,通过解含30度角的直角三角形即可得出点P的坐标.

解:由点D的画法可知AD平分∠OAB

∵△OPA∽△OAB

∴∠OAP=∠OBAOAB

∵∠OAB+OBA=∠OAB+OAB90°

∴∠OAB60°,∠OAP30°

AP2OP

RtOAP中,∠AOP90°OA2

OP

∴点P的坐标为(0).

故选:C

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网