题目内容
【题目】如图,AB∥CD,E为AC上一点,∠ABE=∠AEB,∠CDE=∠CED. 求证:BE⊥DE.
【答案】证明: ∵∠ABE=∠AEB,
∴∠A=180°﹣2∠AEB,
同理∠C=180°﹣2∠CED,
∵AB∥CD,
∴∠A+∠C=180°,
∴180°﹣2∠AEB+180°﹣2∠CED=180°,
∴∠AEB+∠CED=90°,
∴∠BED=90°,
∴BE⊥DE.
【解析】利用三角形内角和定理可把∠A和∠C分别用∠AEB和∠CED表示出来,再利用平行线的性质可求得∠AEB+∠CED=90°,可证得结论.
【考点精析】掌握平行线的性质是解答本题的根本,需要知道两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.
练习册系列答案
相关题目
【题目】某中学为了筹备校庆活动,准备印制一批校庆纪念册.该纪念册分A、B两种,每册都需要10张8K大小的纸,其中A纪念册有4张彩色页和6张黑白页组成;B纪念册有6张彩色页和4张黑白页组成.印制这批纪念册的总费用由制版费和印制费两部分组成,制版费与印数无关,价格为:彩色页300元∕张,黑白页50元∕张;印制费与总印数的关系见下表.
总印数a(单位:千册) | 1≤a<5 | 5≤a<10 |
彩色(单位:元∕张) | 2.2 | 2.0 |
黑白(单位:元∕张) | 0.7 | 0.5 |
(1)印制这批纪念册的制版费为元.
(2)若印制A、B两种纪念册各2千册,则共需多少费用?
(3)如果该校共印制了A、B两种纪念册6千册,一共花费了75500元,则该校印制了A、B两种纪念册各多少册?