题目内容
如图所示,在平常对某种药品的需求量y1(万件),供应量y2(万件)与价格x(元/件)分别近似满足下列函数关系式:y1=-x+50,y2=2x-22.当y1=y2时,该药品的价格称为稳定价格,需求量称为稳定需求量.
(1)图象中a,b,c的值分别为:a=______,b=______,c=______.
(2)求该药品的稳定价格与稳定需求量.
(3)若供应量和需求量这两种量之间相差3万件,求此时对应的价格.

(1)图象中a,b,c的值分别为:a=______,b=______,c=______.
(2)求该药品的稳定价格与稳定需求量.
(3)若供应量和需求量这两种量之间相差3万件,求此时对应的价格.

(1)当y2=0时,2x-22=0,解得:x=11,
则a=11;
当y1=0时,-x+50=0,解得:x=50,
则b=50,
当x=50时,y2=2×50-22=78,
则c=78;
(2)联立两个解析式得
,解得
,
答:该药品的稳定价格为24元/件,稳定需求量为26万件;
(3)当y1-y2=3时,-x+50-(2x-22)=3,解得:x=23;
当y2-y1=3时,(2x-22)-(-x+50)=3,解得:x=25.
答:此时对应的价格为23元/件或25元/件.
则a=11;
当y1=0时,-x+50=0,解得:x=50,
则b=50,
当x=50时,y2=2×50-22=78,
则c=78;
(2)联立两个解析式得
|
|
答:该药品的稳定价格为24元/件,稳定需求量为26万件;
(3)当y1-y2=3时,-x+50-(2x-22)=3,解得:x=23;
当y2-y1=3时,(2x-22)-(-x+50)=3,解得:x=25.
答:此时对应的价格为23元/件或25元/件.

练习册系列答案
相关题目