题目内容

如图,AD为△ABC的中线,
(1)作△ABD的中线BE;
(2)作△BED的BD边上的高EF;
(3)若△ABC的面积为60,BD=10,则点E到BC边的距离为多少?

试题分析:(1)找到边AD的中点E,连接BE,线段BE是△ABD的中线;
(2)△BED是钝角三角形,所以BD边上的高在BD的延长线上;
(3)先根据三角形的中线把三角形分成面积相等的两个小三角形,结合题意可求得△BED的面积,再直接求点E到BC边的距离即可.
试题解析:(1)如图所示,BE是△ABD的中线;
(2)如图所示,EF即是△BED中BD边上的高.

(3)∵AD为△ABC的中线,BE为三角形ABD中线,
∴S△BED=S△ABC=×60=15;
∵BD=10,
∴EF=2S△BED÷BD=2×15÷10=3,
即点E到BC边的距离为3.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网