题目内容

【题目】如图,△ABC和△A′B′C′关于直线对称,下列结论中:①△ABC≌△A′B′C′;
②∠BAC′=∠B′AC;
③l垂直平分CC′;
④直线BC和B′C′的交点不一定在l上,
正确的有( )

A.4个
B.3个
C.2个
D.1个

【答案】B
【解析】∵△ABC和△A′B′C′关于直线l对称,∴①△ABC≌△A′B′C′,正确;
②∠BAC=∠B′AC′,
∴∠BAC+∠CAC′=∠B′AC′+∠CAC′,
即∠BAC′=∠B′AC,正确;
②l垂直平分CC′,正确;
④应为:直线BC和B′C′的交点一定在l上,故本小题错误。
综上所述,结论正确的是①②③共3个。
故答案为:B
轴对称的性质:关于某条直线对称的两个图形是全等形;两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。根据性质可知④不符合题意,其余三个都符合题意。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网