题目内容

【题目】如图,在矩形OABC中,OA=8,OC=4,沿对角线OB折叠后,点A与点D重合,OD与BC交于点E,则点D的坐标是(  )

A.(4,8)
B.(5,8)
C.(
D.(

【答案】C
【解析】解:∵矩形ABCO中,OA=8,OC=4,
∴BC=OA=8,AB=OC=4,
由折叠得到OD=OA=BC,∠AOB=∠DOB,∠ODB=∠BAO=90°,
在Rt△CBO和Rt△DOB中,

∴Rt△CBO≌Rt△DOB(HL),
∴∠CBO=∠DOB,
∴OE=EB,
设CE=x,则EB=OE=8﹣x,
在Rt△COE中,根据勾股定理得:(8﹣x)2=x2+42
解得:x=3,
∴CE=3,OE=5,DE=3,
过D作DF⊥BC,可得△COE∽△FDE,
,即
解得:DF=,EF=
∴DF+OC=+4=,CF=3+=
则D(),
故选C.

由四边形ABCD为矩形,利用矩形的性质得到两对边相等,再利用折叠的性质得到OA=OD,两对角相等,利用HL得到直角三角形BOC与直角三角形BOD全等,利用全等三角形对应角相等及等角对等边得到OE=EB,在直角三角形OCE中,设CE=x,表示出OE,利用勾股定理求出x的值,确定出CE与OE的长,进而由三角形COE与三角形DEF相似,求出DF与EF的长,即可确定出D坐标.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网