题目内容

【题目】⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).

(1)如图1,AC=BC
(2)如图2,直线l与⊙O相切于点P,且l∥BC。

【答案】
(1)

解:如图1,

直径CD为所求;


(2)

解:如图2,

弦AD为所求.


【解析】(1)过点C作直径CD,由于AC=BC,,根据垂径定理的推理得CD垂直平分AB,所以CD将△ABC分成面积相等的两部分;
(2)连结PO并延长交BC于E,过点A、E作弦AD,由于直线l与⊙O相切于点P,根据切线的性质得OP⊥l,而l∥BC,则PE⊥BC,根据垂径定理得BE=CE,所以弦AE将△ABC分成面积相等的两部分.
此题考查了圆的应用,根据垂径定理,切线的性质即可解答问题。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网