题目内容
【题目】把分别标有数字2、3、4、5的四个小球放入A袋内,把分别标有数字、、、、的五个小球放入B袋内,所有小球的形状、大小、质地完全相同,A、B两个袋子不透明.
(1)小明分别从A、B两个袋子中各摸出一个小球,求这两个小球上的数字互为倒数的概率。(利用“画树状图”或“列表”的方式给出分析过程)
(2)当B袋中标有的小球上的数字变为 时(填写所有结果),(1)中的概率为.
【答案】(1);(2)、、、.
【解析】
试题分析:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这两个小球上的数字互为倒数的情况,再利用概率公式即可求得答案;
(2)由概率为,可得这两个小球上的数字互为倒数的有5种情况,继而可求得答案.
试题解析:(1)画树状图得:
,
∵共有20种等可能的结果,这两个小球上的数字互为倒数的有4种情况,
∴这两个小球上的数字互为倒数的概率为;
(2)、、、.
练习册系列答案
相关题目