题目内容
【题目】如图,已知一次函数y=﹣ x+b的图象经过点A(2,3),AB⊥x轴,垂足为B,连接OA.
(1)求此一次函数的解析式;
(2)设点P为直线y=﹣ x+b上的一点,且在第一象限内,经过P作x轴的垂线,垂足为Q.若S△POQ=
S△AOB , 求点P的坐标.
【答案】
(1)
解:∵一次函数y=﹣ x+b的图象经过点A(2,3),
∴3=(﹣ )×2+b,
解得b=4,
故此一次函数的解析式为:y=﹣ x+4
(2)
解:设P(p,d),p>0,
∵点P在直线y=﹣ x+4的图象上,
∴d=﹣ p+4①,
∵S△POQ= S△AOB=
×
×2×3,
∴ pd=
②,
①②联立得, ,
解得 或
,
∴P点坐标为:(3, )或(5,
)
【解析】(1)直接把点A(2,3)代入一次函数y=﹣ x+b即可求出b的值,进而得出一次函数的解析式;(2)设P(p,d),p>0,再根据点P在一次函数的图象上及S△POQ=
S△AOB , 即可得出关于p、d的方程组,求出p、d的值即可.
【考点精析】关于本题考查的确定一次函数的表达式,需要了解确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法才能得出正确答案.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】某个体水果店经营某种水果,进价元/千克,售价
元/千克,
月
日至
月
日经营情况如下表:
日期 | |||||
购进 | |||||
售出 | |||||
损耗 |
若
月
日的库存为
,则
月
日的库存为________;
就
月
日经营情况看,当天是赚还是赔了?
每天交卫生费
元,则
月
日
月
日该个体户共赚多少钱?