题目内容
【题目】如图1,菱形ABCD中,已知∠BAD=120°,∠EGF=60°,∠EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC,CD于点E,F.
(1)如图2,当顶点G运动到与点A重合时,求证:EC+CF=BC;
(2)知识探究:①如图3,当顶点G运动到AC中点时,探究线段EC,CF与BC的数量关系;
②在顶点G的运动过程中,若 =t,请直接写出线段EC,CF与BC的数量关系(不需要写出证明过程);
(3)问题解决:如图4,已知菱形边长为8,BG=7,CF= ,当t>2时,求EC的长度.
【答案】
(1)证明:如图2中,在CA上取一点M,使得CM=CE,连接EM.
∵四边形ABCD是菱形,∠BAD=120°,
∴AB=BC=CD=AD,∠CAB=∠CAD=60°,
∴△ABC,△ACD都是等边三角形,
∴∠AB=AC,∠BAC=∠EAF=60°,∠B=∠ACF=60°,
∴∠BAE=∠CAF,
在△BAE和△CAF中, ,
∴△ABE≌△ACF,
∴AE=AF,∵∠EAF=60°,
∴△AEF是等边三角形,
∵CE=CM,∠ECM=60°,
∴△ECM是等边三角形,
∴∠AEF=∠MEC=60°,AE=EF,EM=EC,
∴∠AEM=∠FEC,
在△AEM和△FEC中,
,
∴△AEM≌△FEC,
∴AM=CF,
∴BC=AC=AM+CM=EC+CF
(2)解:①结论:EC+CF= BC.
理由:如图3中,取BC中点P,CD中点Q,连接PG、GQ.
∵AG=GC,CPB,CQ=DQ,
∴PG∥AB,GQ∥QD,
∴∠CPG=∠B=60°,∠CGP=∠CAB=60°,
∴△CPG是等边三角形,同理可证△CQG是等边三角形,
由(1)可知,CE+CF=PC= BC.
②结论:CE+CF= .
理由:如图4中,作GP∥AB交BC于P,GQ∥AD交CD于Q.
∴PG∥AB,GQ∥QD,
∴∠CPG=∠B=60°,∠CGP=∠CAB=60°,
∴△CPG是等边三角形,同理可证△CQG是等边三角形,
由(1)可知,CE+CF=PC=CG,
∵AC=BC=tCG,
∴CE+CF=
(3)如图4中,作BM⊥AC于M.
∵t>2,
∴点G在线段CM上,
在Rt△ABM中,∵∠BMC=90°,BM= ×8=4 ,BG=7,
∴MG= = =1,
∵CM=MA=4,
∴CG=CM﹣MG=3,
由(1)可知,CG=CE+CF,
∴CE=CG﹣CF=3﹣ =
【解析】(1)如图2中,在CA上取一点M,使得CM=CE,连接EM.首先证明△ABE≌△ACF,再证明△AEM≌△FEC,即可解决问题.(2)①结论:EC+CF= BC.如图3中,取BC中点P,CD中点Q,连接PG、GQ.利用(1)的结论解决问题.②结论:CE+CF= .如图4中,作GP∥AB交BC于P,GQ∥AD交CD于Q.利用(1)的结论解决问题.(3)如图4中,作BM⊥AC于M.利用(1)的结论:CG=CE+CF,求出CE即可解决问题.
【考点精析】掌握全等三角形的性质和菱形的性质是解答本题的根本,需要知道全等三角形的对应边相等; 全等三角形的对应角相等;菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.
【题目】某儿童游乐园门票价格规定如下表:
购票张数 | 1~50张 | 51~100张 | 100张以上 |
每张票的价格 | 13元 | 11元 | 9元 |
某校七年级(1)、(2)两个班共102人今年6.1儿童节去游该游乐园,其中(1)班人数较少,不足50人。经估算,如果两个班都以班为单位购票,则一共应付1218元。问:
(1)两个班各有多少学生?
(2)如果两班联合起来,作为一个团体购票,可以节省多少钱?