题目内容
【题目】一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.
将三角形、正方形、五边形都整齐的由左到右填在所示表格里:
三角形数 | 1 | 3 | 6 | 10 | 15 | 21 | a | … |
正方形数 | 1 | 4 | 9 | 16 | 25 | b | 49 | … |
五边形数 | 1 | 5 | 12 | 22 | C | 51 | 70 | … |
(1)按照规律,表格中a=___,b=___,c=___.
(2)观察表中规律,第n个“正方形数”是________;若第n个“三角形数”是x,则用含x、n的代数式表示第n个“五边形数”是___________.
【答案】 28 36 35 n2 n2 +x-n
【解析】分析:(1)、首先根据题意得出前6个“三角形数”分别是多少,从而得出a的值;前5个“正方形数”分别是多少,从而得出b的值;前4个“正方形数”分别是多少,从而得出c的值;(2)、根据前面得出的一般性得出答案.
详解:(1)∵前6个“三角形数”分别是:1=、3=、6=、10=、15=、21=,
∴第n个“三角形数”是, ∴a=7×82=287×82=28.
∵前5个“正方形数”分别是: 1=12,4=22,9=32,16=42,25=52,
∴第n个“正方形数”是n2, ∴b=62=36.
∵前4个“正方形数”分别是:1=,5=,12=,22=,
∴第n个“五边形数”是n(3n1)2n(3n1)2, ∴c==35.
(2)第n个“正方形数”是n2;1+1-1=1,3+4-5=2,6+9-12=3,10+16-22=4,…,
∴第n个“五边形数”是n2+x-n.
【题目】如图,在矩形ABCD中,AB=6cm,AD=3cm,点P是边DC上一动点,设D,P两点之间的距离为xcm,P,A两点之间的距离为ycm.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
(1)确定自变量x的取值范围________;
(2)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 3 | 3.1 | 3.6 | 4.3 |
| 5.8 | 6.7 |
(3)在下列网格中建立平面直角坐标系,描出补全后的表中各组数值对应的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当PA=2AD 时,PD的长度约为______cm.