题目内容

如图,PA为圆的切线,A为切点,PBC为割线,∠APC的平分线交AB于点D,交AC于点E.
求证:(1)AD=AE;(2)AB•AE=AC•DB.
证明:(1)∵∠ADE=∠APD+∠PAD,∠AED=∠CPE+∠C,
又∠APD=∠CPE,∠PAD=∠C.
∴∠ADE=∠AED.
∴AD=AE.

(2)∵∠APB=∠CPA,∠PAB=∠C,
∴△APB△CPA,得
AB
AC
=
PB
PA

∵∠APE=∠BPD,∠AED=∠ADE=∠PDB,
∴△PBD△PEA,得
PB
PA
=
DB
AE

AB
AC
=
DB
AE

∴AB•AE=AC•DB.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网