题目内容

如图,在平面直角坐标系xoy中,抛物线yx2x-10与x轴的交点为A,与y轴的交点为点B,过点Bx轴的平行线BC,交抛物线于点C,连结AC.现有两动点PQ分别从OC两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动.线段OCPQ相交于点D,过点DDEOA,交CA于点E,射线QEx轴于点F.设动点PQ移动的时间为t(单位:秒)

(1)求A,C两点的坐标和抛物线的顶点M坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当0<t<4.5时,△PQF的面积是否总为定值?若是,求出此定值;若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.
(1)A(18,0) C(8,-10) M (4,-),(2),理由见解析(3)是定值,理由见解析(4)t-2,理由见解析解析:
(1)在yx2x-10中,令y=0,得x2-8x-180=0.
解得x=-10或x=18,∴A(18,0). …………………………1分
yx2x-10中,令x=0,得y=-10.
B(0,-10).
BCx轴,∴点C的纵坐标为-10.
由-10=x2x-10得x=0或x=8.
C(8,-10). ……………………………………………………2分
yx2x-10=(x-4)2
∴抛物线的顶点坐标为(4,-).………………………………3分
(2)若四边形PQCA为平行四边形,由于QCPA,故只要QCPA即可.
QCtPA=18-4t,∴t=18-4t
解得t.…………………………………………………………5分
(3)设点P运动了t秒,则OP=4tQCt,且0<t<4.5,说明点P在线段OA上,且不与点OA重合.
QCOP,    ∴
同理QCAF,∴,即
AF=4tOP
PFPAAFPAOP=18.
SPQF PF·OB×18×10=90
∴△PQF的面积总为定值90. …………………………………………7分
(4)设点P运动了t秒,则P(4t,0),F(18+4t,0),Q(8-t,-10)  t在(0,4.5).
∴PQ2=(4t-8+t)2+102=(5t-8)2+100
FQ2=(18+4t-8+t)2+102=(5t+10)2+100.
PF 2=324
①若FP=FQ,则182=(5t+10)2+100.
即25(t+2)2=224,(t+2)2
∵0≤t≤4.5,∴2≤t+2≤6.5,∴t+2=
t-2.
②若QP=QF,则(5t-8)2+100=(5t+10)2+100.
即(5t-8)2=(5t+10)2,无0≤t≤4.5的t满足.
③若PQPF,则(5t-8)2+100=182
即(5t-8)2=224,由于≈15,又0≤5t≤22.5,
∴-8≤5t-8≤14.5,而14.52=()2<224.
故无0≤t≤4.5的t满足此方程.
注:也可解出t<0或t>4.5均不合题意,
故无0≤t≤4.5的t满足此方程.
综上所述,当t-2时,△PQF为等腰三角形………………………………10分
(1)在yx2x-10中,令y=0可求A,令x=0,可求B;由BC∥x轴,可得点C的纵坐标为-10.由-10=x2x-10可求C,由y=x2x-10=
可求抛物线的顶点坐标
(2)若四边形PQCA为平行四边形,由于QC∥PA,故只要QC=PA即可求解.
(3)设点P运动了t秒,则OP=4t,QC=t,且0<t<4.5,说明点P在线段OA上,且不与点O,A重合.由QC∥OP,可得.同理QC∥AF,∴,即.代入三角形的面积公式S△PQF=PF•OB
(4)设点P运动了t秒,则P(4t,0),F(18+4t,0),Q(8-t,-10)t∈(0,4.5).从而有PQ2=(4t-8+t)2+102=(5t-8)2+100,FQ2=(18+4t-8+t)2+102=(5t+10)2+100.分①若FP=FQ②若QP=QF,③若PQ=PF分别进行求解
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网