题目内容
小明早晨从家里出发匀速步行去上学,小明的妈妈在小明出发后10分钟,发现小明的数学课本没带,于是她带上课本立即匀速骑车按小明上学的路线追赶小明,结果与小明同时到达学校.已知小明在整个上学途中,他出发后分钟时,他所在的位置与家的距离为千米,且与之间的函数关系的图像如图中的折线段所示.
(1)试求折线段所对应的函数关系式;
(2)请解释图中线段的实际意义;
(3)请在所给的图中画出小明的妈妈在追赶小明的过程中,她所在位置与家的距离(千米)与小明出发后的时间(分钟)之间函数关系的图像.(友情提醒:请对画出的图像用数据作适当的标注)
(1)线段OA对应的函数关系式为:s=t(0≤t≤12)
线段AB对应的函数关系式为:s=1(12<t≤20);
(2)图中线段AB的实际意义是:小明出发12分钟后,沿着以他家为圆心,1千米为半径的圆弧形道路上匀速步行了8分钟;
(3)图形见解析.
解析试题分析:(1)OA为正比例函数图象,可以用待定系数法求出;
(2)AB段离家距离没发生变化说明在以家为圆心做曲线运动;
(3)妈妈的速度正好是小明的2倍,所以妈妈走弧线路用(20﹣12)÷2=4分钟.
试题解析:(1)线段OA对应的函数关系式为:s=t(0≤t≤12)
线段AB对应的函数关系式为:s=1(12<t≤20);
(2)图中线段AB的实际意义是:
小明出发12分钟后,沿着以他家为圆心,1千米为半径的圆弧形道路上匀速步行了8分钟;
(3)由图象可知,小明花20分钟到达学校,则小明的妈妈花20﹣10=10分钟到达学校,可知小明妈妈的速度是小明的2倍,即:小明花12分钟走1千米,则妈妈花6分钟走1千米,故D(16,1),小明花20﹣12=8分钟走圆弧形道路,则妈妈花4分钟走圆弧形道路,故B(20,1).
妈妈的图象经过(10,0)(16,1)(20,1)如图中折线段CD﹣DB就是所作图象.
.
考点:一次函数的应用.