题目内容

【题目】如图,经过点A60)的直线ykx3与直线y=﹣x交于点B,点P从点O出发以每秒1个单位长度的速度向点A匀速运动.

1)求点B的坐标;

2)当△OPB是直角三角形时,求点P运动的时间;

3)当BP平分△OAB的面积时,直线BPy轴交于点D,求线段BD的长.

【答案】1)点B的坐标(2,-2);(2)当△OPB是直角三角形时,求点P运动的时间为2秒或4秒;(3)当BP平分△OAB的面积时,线段BD的长为2

【解析】

1)根据点A的坐标,利用待定系数法可求出直线AB的解析式,联立直线ABOB的解析式成方程组,通过解方程组可求出点B的坐标;
2)由∠BOP=45°可得出∠OPB=90°或∠OBP=90°,①当∠OPB=90°时,△OPB为等腰直角三角形,根据等腰直角三角形的性质可得出OP的长,结合点P的运动速度可求出点P运动的时间;②当∠OBP=90°时,△OPB为等腰直角三角形,根据等腰直角三角形的性质可得出OP的长,结合点P的运动速度可求出点P运动的时间.综上,此问得解;
3)由BP平分△OAB的面积可得出OP=AP,进而可得出点P的坐标,根据点BP的坐标,利用待定系数法可求出直线BP的解析式,利用一次函数图象上点的坐标特征可求出点D的坐标,过点BBEy轴于点E,利用勾股定理即可求出BD的长.

1)直线ykx3过点A6,0),

所以,06k3,解得:k

直线AB为:3

,解得:

所以,点B的坐标(2,-2

  

(2)∵∠BOP=45°,△OPB是直角三角形,
∴∠OPB=90°或∠OBP=90°,如图1所示:
①当∠OPB=90°时,△OPB为等腰直角三角形,
∴OP=BP=2,
又∵点P从点O出发以每秒1个单位长度的速度向点A匀速运动,
∴此时点P的运动时间为2秒;
②当∠OBP=90°时,△OPB为等腰直角三角形,
∴OP=2BP=4,
又∵点P从点O出发以每秒1个单位长度的速度向点A匀速运动,
∴此时点P的运动时间为4秒.
综上,当△OPB是直角三角形时,点P的运动时间为2秒或4秒.
(3)∵BP平分△OAB的面积,
∴SOBP=SABP
∴OP=AP,
∴点P的坐标为(3,0).
设直线BP的解析式为y=ax+b(a≠0),
将B(2,-2),点P(3,0)代入y=ax+b,得:


解得:
∴直线BP的解析式为y=2x-6.
当x=0时,y=2x-6=-6,
∴点D的坐标为(0,-6).
过点B作BE⊥y轴于点E,如图2所示.
∵点B的坐标为(2,-2),点D的坐标为(0,-6),
∴BE=2,CE=4,
∴BD==2
∴当BP平分△OAB的面积时,线段BD的长为2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网