题目内容
【题目】如图,点A,D是函数y= (k>0,x>0)图象上两点(点A在点D的左侧),直线AD分别交x,y轴于点E,F.AB⊥x轴于点B,CD⊥x轴于点C,连结AO,BD.若BC=OB+CE,S△AOF+S△CDE=1,则S△ABD= .
【答案】
【解析】解:设A(a, ),D(d, ),则d>a,B(a,0),C(d,0), ∵BC=d﹣a,BC=OB+CE,
∴OE=2BC=2d﹣2a,
∴E(2d﹣2a,0).
∵tan∠AEB= = = ,
∴ = = ,
整理得3a2﹣4ad+d2=0,
(a﹣d)(3a﹣d)=0,
∵a﹣d≠0,
∴3a﹣d=0,
∴d=3a.
∵ = ,
∴OF= .
∵S△AOF+S△CDE=1,
∴ × ×a+ ×(2d﹣2a﹣d)× =1,
∴k= ,
∴S△ABD=S梯形ABCD﹣S△BCD
= ( + )(d﹣a)﹣ × ×(d﹣a)
= × ×(d﹣a)
= × ×(3a﹣a)
= .
所以答案是 .
【考点精析】认真审题,首先需要了解比例系数k的几何意义(几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积).
练习册系列答案
相关题目
【题目】某公司有、两种型号的客车共20辆,它们的载客量、每天的租金如下表所示.已知在20辆客车都坐满的情况下,共载客720人.
A型号客车 | B型号客车 | |
载客量(人/辆) | 45 | 30 |
租金(元/辆) | 600 | 450 |
(1)求、两种型号的客车各有多少辆?
(2)某中学计划租用、两种型号的客车共8辆,同时送七年级师生到沙家浜参加社会实践活动,已知该中学租车的总费用不超过4600元. 求最多能租用多少辆A型号客车?