题目内容
【题目】已知:如图,直线y=kx+2与x轴的正半轴相交于点A(t,0)、与y轴相交于点B,点C在第三象限内,且AC⊥AB,AC=2AB.
(1)当t=1时,求直线BC的表达式;
(2)点C落在直线:y=-3x-10上,求直线CA的表达式.
【答案】(1) (2)y=x-2
【解析】(1)先证ΔAOB∽ΔACH求出C点的坐标,设BC为y=k1x +b将B、C代入即可求出直线BC的表达式;(2)由(1)可知ΔAOB∽ΔACH,求出A、C的坐标代入AC为,即可求出直线CA的表达式.
解:(1)过H作CH⊥x轴,垂足为H,
由题意得,当t=1时,A(1,0),OA=1,B(0,2),OB=2
AC⊥AB,∠BAC=90°,∠BAO+∠CAH=90°
∠BAO+∠OBA=90°∠ABO=∠CAH
在ΔAOB与ΔACH 中,
∠ABO=∠CAH
∠AOB=∠CHA与
ΔAOB∽ΔACH
CH=2,AH=4,
C(-3,-2)
设BC为y=k1x +b,代入B(0,2),C(-3,-2)
得,解得,
(2)由(1)可知ΔΔAOB∽ΔACH
CH=2t,AH=4,
C(t-4,-2t)
又C在直线:y=-3x-10上,
t=2
C(-2,-4),A(2,0)
设AC为,代入A(2,0),C(-2,-4)
,解得,
练习册系列答案
相关题目