题目内容
【题目】如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1.
(1)求抛物线的函数表达式;
(2)若点P在第二象限内,且PE=OD,求△PBE的面积.
(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.
【答案】(1)y=x2+
x﹣2;(2)
;(3)M坐标为(
,
)或(﹣
,
).
【解析】
(1)点A(2,0)、点B(-4,0),则函数的表达式为:y=a(x-2)(x+4)=a(x2+2x-8),即可求解;
(2)PE=OD,则PE=(
x2+
x-2-
x+2)=
(-x),求得:点D(-5,0),利用S△PBE=
PE×BD=
(
x2+
x-2-
x+2)(-4-x),即可求解;
(3)分两种情况求解即可:①当BD=BM时,②当BD=DM(M′)时.
(1)点A的坐标是(2,0),抛物线的对称轴是直线x=﹣1,则点B(﹣4,0),
则函数的表达式为:y=a(x﹣2)(x+4)=a(x2+2x﹣8),
把点C(0,-2)代入得:﹣8a=﹣2,解得:a=,
故抛物线的表达式为:y=x2+
x﹣2;
(2)将点B、C的坐标代入一次函数表达式:y=mx+n并解得:
直线BC的表达式为:y=﹣x﹣2,则tan∠ABC=
,则sin∠ABC=
,
设点D(x,0),则点P(x,x2+
x﹣2),点E(x,﹣
x﹣2),
∵PE=OD,OD=﹣x,
∴PE=(x2+
x﹣2+
x+2)=
x2+x,
即x2+x=-
x,
解得:x=0或﹣5(舍去x=0),
即点D(﹣5,0),
S△PBE=×PE×BD=
(
x2+
x﹣2+
x+2)(﹣4﹣x)=
;
(3)由题意得:△BDM是以BD为腰的等腰三角形,
①当BD=BM时,过点M作MH⊥x轴于点H,
BD=1=BM,
则MH=yM=BMsin∠ABC=1×=
,
则xM=,
故点M(,
);
②当BD=DM(M′)时,
同理可得:点M′(﹣,
);
故点M坐标为(﹣,﹣
)或(﹣
,
).
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】现今,“微信运动“被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况并进行统计整理,绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题
(1)写出a,b的值并补全频数分布直方图;
(2)50名教师该日“微信运动”统计数据中步数的中位数落在第 组;本市约有40000名教师,估计日行走步数超过1.2万步(包含1.2万步)的教师约有 名.
(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步)的两名教师与大家分享心得,求被选取的两名教师恰好都在2000步(包含20000)以上的概率.
步数(万步) | 频数 | 频率 |
0≤x<0.4 | 8 | a |
0.4≤x<0.8 | 15 | 0.3 |
0.8≤x<1.2 | 12 | 0.241 |
1.2≤x<1.6 | 10 | 0.2 |
1.6≤x<2 | 3 | 0.06 |
2≤x<2.4 | b | 0.04 |
【题目】现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):
步数 | 频数 | 频率 |
0≤x<4000 | 8 | a |
4000≤x<8000 | 15 | 0.3 |
8000≤x<12000 | 12 | b |
12000≤x<16000 | c | 0.2 |
16000≤x<20000 | 3 | 0.06 |
20000≤x<24000 | d | 0.04 |
请根据以上信息,解答下列问题:
(1)写出a,b,c,d的值并补全频数分布直方图;
(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?
(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.