题目内容
【题目】如图,在中,,,为边的高,点在轴上,点在轴上,点在第一象限,若从原点出发,沿轴向右以每秒1个单位长的速度运动,则点随之沿轴下滑,并带动在平面内滑动,设运动时间为秒,当到达原点时停止运动
(1)连接,线段的长随的变化而变化,当最大时,______.
(2)当的边与坐标轴平行时,______.
【答案】4
【解析】
(1)由等腰三角形的性质可得AD=BD,从而可求出OD=4,然后根据当O,D,C共线时,OC取最大值求解即可;
(2)根据等腰三角形的性质求出CD,分AC∥y轴、BC∥x轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可.
(1),
,
当O,D,C共线时,OC取最大值,此时OD⊥AB.
∵,
∴△AOB为等腰直角三角形,
∴ ;
(2)∵BC=AC,CD为AB边的高,
∴∠ADC=90°,BD=DA=AB=4,
∴CD==3,
当AC∥y轴时,∠ABO=∠CAB,
∴Rt△ABO∽Rt△CAD,
∴,即,
解得,t=,
当BC∥x轴时,∠BAO=∠CBD,
∴Rt△ABO∽Rt△BCD,
∴,即,
解得,t= ,
则当t=或时,△ABC的边与坐标轴平行.
故答案为:t=或.
练习册系列答案
相关题目