题目内容

【题目】如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.

(1)求证:CD是⊙O的切线;

(2)若⊙O的半径为2,求图中阴影部分的面积.

【答案】(1)证明见解析;(2)

【解析】

试题分析:(1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;

(2)阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.

试题解析:(1)证明:连接OC.

AC=CD,∠ACD=120°,∠A=∠D=30°.OA=OC,∠2=∠A=30°,∠OCD=180°﹣∠A﹣∠D﹣∠2=90°.即OC⊥CD,CD是⊙O的切线.

(2)解:∠A=30°,∠1=2∠A=60°,S扇形BOC==.在Rt△OCD中,=tan60°CD==OCCD==图中阴影部分的面积为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网