题目内容
【题目】如图,AB为⊙O的直径,C为半圆上一动点,过点C作⊙O的切线l的垂线BD,垂足为D,BD与⊙O交于点E,连接OC,CE,AE,AE交OC于点F.
(1)求证:△CDE≌△EFC;
(2)若AB=4,连接AC. ①当AC=时,四边形OBEC为菱形;
②当AC=时,四边形EDCF为正方形.
【答案】
(1)证明:如图,
∵BD⊥CD,
∴∠CDE=90°,
∵AB是直径,
∴∠AEB=90°,
∵CD是切线,
∴∠FCD=90°,
∴四边形CFED矩形,
∴CF=DE,EF=CD,
在△CDE和△EFC中,
,
∴△CDE≌△EFC.
(2)2;2
【解析】(2)解:①当AC=2时,四边形OCEB是菱形. 理由:连接OE.
∵AC=OA=OC=2,
∴△ACO是等边三角形,
∴∠CAO=∠AOC=60°,
∵∠AFO=90°,
∴∠EAB=30°,
∵∠AEB=90°,
∴∠B=60°,∵OE=OB,
∴△OEB是等边三角形,
∴∠EOB=60°,
∴∠COE=180°﹣60°﹣60°=60°,∵CO=OE,
∴△COE是等边三角形,
∴CE=CO=OB=EB,
∴四边形OCEB是菱形.
所以答案是2.
②当四边形DEFC是正方形时,
∵CF=FE,
∵∠CEF=∠FCE=45°,
∵OC⊥AE,
∴ ,
∴∠CAE=∠CEA=45°,
∴∠ACE=90°,
∴AE是⊙O的直径,
∴ ,
∴△AOC是等腰直角三角形,
∴AC= OA=2
.
∴AC=2 时,四边形DEFC是正方形.
所以答案是2 .
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】为了对学生进行多元化的评价,某中学决定对学生进行综合素质评价设该校中学生综合素质评价成绩为x分,满分为100分评价等级与评价成绩x分之间的关系如下表:
中学生综合素质评价成绩 | 中学生综合素质评价等级 |
A级 | |
B级 | |
C级 | |
D级 |
现随机抽取该校部分学生的综合素质评价成绩,整理绘制成图、图
两幅不完整的统计图
请根据相关信息,解答下列问题:
(1)在这次调查中,一共抽取了______名学生,图中等级为D级的扇形的圆心角
等于______
;
(2)补全图中的条形统计图;
(3)若该校共有1200名学生,请你估计该校等级为C级的学生约有多少名.