题目内容
如图①,△ABC中,DC,BD分别是∠ACB和∠ABC的平分线,且∠A=α
(1)用含α的代数识别是∠CDB;
(2)若把图①中∠ACB的平分线DC改为∠ACB的外角的平分线(如图②),怎样用含α的代数式别是∠CDB.
(3)若把图①中“DC,DB分别是∠ACB和∠ABC的平分线”改成“DC,BD分别是∠ACB和∠ABC的外角的平分线”,(如图③),怎样用含α的代数式别是∠CDB.
(1)用含α的代数识别是∠CDB;
(2)若把图①中∠ACB的平分线DC改为∠ACB的外角的平分线(如图②),怎样用含α的代数式别是∠CDB.
(3)若把图①中“DC,DB分别是∠ACB和∠ABC的平分线”改成“DC,BD分别是∠ACB和∠ABC的外角的平分线”,(如图③),怎样用含α的代数式别是∠CDB.
(1)∵∠A=α,∴∠ABC+∠ACB=180°-α,
∵DC,BD分别是∠ACB和∠ABC的平分线,
∴∠DBC+∠DCB=
×(∠ABC+∠ACB)=90°-α,
∴∠CDB=180°-(∠DBC+∠DCB)=90°+
;
(2)设BC的延长线上有一点E.
∵∠DCE是△BCD的一个外角,
∴∠D=∠DCE-∠DBC,
同理:∠A=∠ACE-∠ABC,
∵CD和BD分别为角平分线,
∴∠DCE=
∠ACE,∠DBC=
∠ABC,
∴∠CDB=
;
(3)∵∠A=α,
∴∠ABC+∠ACB=180°-α,
∵DC,BD分别是∠ACB和∠ABC的外角的平分线,
∴∠DBC+∠DCB=
×[360°-(∠ABC+∠ACB)]=90°+
,
∴∠CDB=CDB=180°-(∠DBC+∠DCB)=90°-
.
∵DC,BD分别是∠ACB和∠ABC的平分线,
∴∠DBC+∠DCB=
1 |
2 |
∴∠CDB=180°-(∠DBC+∠DCB)=90°+
α |
2 |
(2)设BC的延长线上有一点E.
∵∠DCE是△BCD的一个外角,
∴∠D=∠DCE-∠DBC,
同理:∠A=∠ACE-∠ABC,
∵CD和BD分别为角平分线,
∴∠DCE=
1 |
2 |
1 |
2 |
∴∠CDB=
α |
2 |
(3)∵∠A=α,
∴∠ABC+∠ACB=180°-α,
∵DC,BD分别是∠ACB和∠ABC的外角的平分线,
∴∠DBC+∠DCB=
1 |
2 |
α |
2 |
∴∠CDB=CDB=180°-(∠DBC+∠DCB)=90°-
α |
2 |
练习册系列答案
相关题目