题目内容

【题目】如图,以AD为直径的半圆O经过RtABC斜边AB的两个端点,交直角边AC于点EBE是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为(  )

A.B.C.D.

【答案】D

【解析】

首先根据圆周角定理得出扇形半径以及圆周角度数,进而利用锐角三角函数关系得出BC,AC的长,利用S△ABC﹣S扇形BOE=图中阴影部分的面积求出即可

解:连接BD,BE,BO,EO,

∵B,E是半圆弧的三等分点,

∴∠EOA=∠EOB=∠BOD=60°,

∴∠BAC=∠EBA=30°,

∴BE∥AD,

∵弧BE的长为π,

π,

解得:R=2,

∴AB=ADcos30°=2

∴BC=AB=

∴AC==3,

∴S△ABC=×BC×AC=××3=

∵△BOE和△ABE同底等高,

∴△BOE和△ABE面积相等,

∴图中阴影部分的面积为:SABC﹣S扇形BOE

故选D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网