题目内容
【题目】如图1,在平面直角坐标系中,二次函数的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),OB=OC ,tan∠ACO=.
(1)求这个二次函数的表达式;
(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由;
(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度;
(4)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.
【答案】(1)(2)存在,F点的坐标为(2,-3)(3)或(4),
【解析】解:(1)方法一:由已知得:C(0,-3),A(-1,0)
将A、B、C三点的坐标代入得 ………………… 2分
解得:
所以这个二次函数的表达式为: ………………… 3分
方法二:由已知得:C(0,-3),A(-1,0)
设该表达式为: ………………… 2分
将C点的坐标代入得:
所以这个二次函数的表达式为: …………………3分
(注:表达式的最终结果用三种形式中的任一种都不扣分)
(2)方法一:存在,F点的坐标为(2,-3)
理由:易得D(1,-4),所以直线CD的解析式为:
∴E点的坐标为(-3,0)
由A、C、E、F四点的坐标得:AE=CF=2,AE∥CF
∴以A、C、E、F为顶点的四边形为平行四边形
∴存在点F,坐标为(2,-3) ………………… 6分
方法二:易得D(1,-4),所以直线CD的解析式为:
∴E点的坐标为(-3,0)
∵以A、C、E、F为顶点的四边形为平行四边形
∴F点的坐标为(2,-3)或(―2,―3)或(-4,3)
代入抛物线的表达式检验,只有(2,-3)符合
∴存在点F,坐标为(2,-3) ………………… 6分
(3)如图,①当直线MN在x轴上方时,设圆的半径为R(R>0),则N(R+1,R),
代入抛物线的表达式,解得 …………………8分
②当直线MN在x轴下方时,设圆的半径为r(r>0),
则N(r+1,-r),
代入抛物线的表达式,解得 ………………… 9分
∴圆的半径为或.
(4)过点P作y轴的平行线与AG交于点Q,
易得G(2,-3),直线AG为.
设P(x,),则Q(x,-x-1),PQ.
当时,△APG的面积最大
此时P点的坐标为,. ………………… 12分
(1)根据已知条件,易求得C、A的坐标,可用待定系数法求出抛物线的解析式;
(2)根据以点A、C、E、F为顶点的四边形为平行四边形,由平行四边形的性质以及二次函数的性质得出AE=CF,AE∥CF即可得出答案.
(3)分两种情况进行讨论:①当直线MN在x轴上方时;②当直线MN在x轴下方时,设圆的半径,代入抛物线求解
(4)易求得AC的长,由于AC长为定值,当P到直线AG的距离最大时,△APG的面积最大.可过P作y轴的平行线,交AG于Q;设出P点坐标,根据直线AG的解析式可求出Q点坐标,也就求出PQ的长,进而可得出关于△APG的面积与P点坐标的函数关系式,根据函数的性质可求出△APG的最大面积及P点的坐标,根据此时△APG的面积和AG的长,即可求出P到直线AC的最大距离.