题目内容
【题目】如图,抛物线与x轴相交的于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.
(1)直接写出A,B,C三点的坐标和抛物线的对称轴;
(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点(P不与C,B两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.
①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形.
②设△BCF的面积为S,求S与m的函数关系式;当m为何值时,S有最大值.
【答案】(1)A(﹣1,0),B(3,0),C(0,3),抛物线对称轴为直线x=1;(2)①m=2;②S=(0<m<3),则当m=时,S取得最大值.
【解析】
试题分析:(1)对于抛物线,令x=0,得到y=3;
令y=0,得到,即(x﹣3)(x+1)=0,解得:x=﹣1或x=3,则A(﹣1,0),B(3,0),C(0,3),抛物线对称轴为直线x=1;
(2)①设直线BC的函数解析式为y=kx+b,把B(3,0),C(0,3)分别代入得:,解得:k=﹣1,b=3,∴直线BC的解析式为y=﹣x+3,当x=1时,y=﹣1+3=2,∴E(1,2),当x=m时,y=﹣m+3,∴P(m,﹣m+3),令中x=1,得到y=4,∴D(1,4),当x=m时,,∴F(m,),∴线段DE=4﹣2=2,∵0<m<3,∴yF>yP,∴线段PF=﹣(﹣m+3)=.连接DF,由PF∥DE,得到当PF=DE时,四边形PEDF为平行四边形,由,得到m=2或m=1(不合题意,舍去),则当m=2时,四边形PEDF为平行四边形;
②连接BF,设直线PF与x轴交于点M,由B(3,0),O(0,0),可得OB=OM+MB=3,∵S=S△BPF+S△CPF=PFBM+PFOM=PF(BM+OM)=PFOB,∴S=×3(),即S=(0<m<3),则当m=时,S取得最大值.
【题目】目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广节能灯,为响应号召,某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:
进价(元/只) | 售价(元/只) | |
甲 | 25 | 30 |
乙 | 45 | 60 |
(1)如何进货,进货款恰好为46000元?
(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?