题目内容
【题目】如图,已知a∥b,长方形ABCD的点A在直线a上,B,C,D三点在平面上移动变化(长方形形状大小始终保持不变),请根据如下条件解答:
(1)图1,若点B、D在直线b上,点C在直线b的下方,∠2=30°,则∠1= ;
(2)图2,若点D在直线a的上方,点C在平行直线a,b内,点B在直线b的下方,m,n表示角的度数,请写出m与n的数量关系并说明理由;
(3)图3,若点D在平行直线a,b内,点B,C在直线b的下方,x,y表示角的度数(x>y),且满足关系式x2﹣2xy+y2=100,求x的度数.
【答案】(1)60°;(2)90°;(3)50°
【解析】(1)首先根据角的和差关系计算出∠ADB的度数,再根据平行线的性质可得∠1的度数;(2)过C作EF∥a,根据a∥b可得EF∥a∥b, 再根据平行线的性质可得∠4+m=∠BCD,n=∠4,利用等量代换可得答案;(3)过D作c∥b,根据条件可得x-y=10,再根据平行线的性质可得x+y=90,两个方程组合可得答案.
解:(1)∵四边形ABCD是长方形,
∴∠ADC=90°,
∵∠2=30°,
∴∠ADB=60°,
∵a∥b,
∴∠1=∠ADB=60°,
故答案为:60°;
(2)如图2,过C作EF∥a,
∵AB∥CD,
∴n=∠4,
∵a∥b,
∴EF∥a∥b,
∴∠4+m=∠BCD=90°,
∴m+n=90°;
(3)如图3,过D作c∥b,
∵a∥b,
∴a∥b∥c,
∵x2﹣2xy+y2=100,
∴(x﹣y)2=100,
∵x>y,
∴x﹣y=﹣10(舍去),
∴x﹣y=10,①
∵a∥b,
∴a∥b∥c,
∵∠ADC=90°,
∴x+y=90,②
①+②得:x=50°.
“点睛”此题考查了四边形综合,以及平行线的性质和判定,关键是掌握两直线平行,内错角相等.