题目内容
当________或________时,函数y=x2-x-2的函数值大于0.
x<-1 x>2
分析:函数y=x2-x-2与x轴的交点坐标为(2,0),(-1,0),画函数图象得:
∴当x<-1或x>2时,函数y=x2-x-2的函数值大于0.
解答:当x<-1或x>2时,函数y=x2-x-2的函数值大于0.
点评:此题考查了学生的图形分析能力,解此题的关键是要注意利用数形结合思想.
分析:函数y=x2-x-2与x轴的交点坐标为(2,0),(-1,0),画函数图象得:
∴当x<-1或x>2时,函数y=x2-x-2的函数值大于0.
解答:当x<-1或x>2时,函数y=x2-x-2的函数值大于0.
点评:此题考查了学生的图形分析能力,解此题的关键是要注意利用数形结合思想.
练习册系列答案
相关题目
问题背景
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为: ,利用函数的图象或通过配方均可求得该函数的最大值.
提出新问题
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
分析问题
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:,问题就转化为研究该函数的最大(小)值了.
解决问题
借鉴我们已有的研究函数的经验,探索函数的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数的图象:
x | ··· | 1 | 2 | 3 | 4 | ··· | |||
y | | | | | | | | | |
(2)观察猜想:观察该函数的图象,猜想当x= 时,函数有最 值(填
“大”或“小”),是 .
(3)推理论证:问题背景中提到,通过配方可求二次函数的最大值,请你尝试通过配方求函数的最大(小)值,以证明你的猜想. 〔提示:当时,〕
问题背景
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为: ,利用函数的图象或通过配方均可求得该函数的最大值.
提出新问题
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
分析问题
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:,问题就转化为研究该函数的最大(小)值了.
解决问题
借鉴我们已有的研究函数的经验,探索函数的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数的图象:
x |
··· |
1 |
2 |
3 |
4 |
··· |
|||
y |
|
|
|
|
|
|
|
|
|
(2)观察猜想:观察该函数的图象,猜想当x= 时,函数有最 值(填
“大”或“小”),是 .
(3)推理论证:问题背景中提到,通过配方可求二次函数的最大值,请你尝试通过配方求函数的最大(小)值,以证明你的猜想. 〔提示:当时,〕