题目内容

问题背景

若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为: ,利用函数的图象或通过配方均可求得该函数的最大值.

提出新问题

若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?

分析问题

若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:,问题就转化为研究该函数的最大(小)值了.

解决问题

借鉴我们已有的研究函数的经验,探索函数的最大(小)值.

(1)实践操作:填写下表,并用描点法画出函数的图象:

 

x

···

1

2

3

4

···

y

 

 

 

 

 

 

 

 

 

 

 

(2)观察猜想:观察该函数的图象,猜想当x=         时,函数有最    值(填

“大”或“小”),是          .

(3)推理论证:问题背景中提到,通过配方可求二次函数的最大值,请你尝试通过配方求函数的最大(小)值,以证明你的猜想. 〔提示:当时,

 

【答案】

 

解:(1)填表如下:

 

x

···

1

2

3

4

···

y

···

5

4

5

···

 

 

 

(2)1,小,4。

(3)证明:∵

        ∴当时,y的最小值是4,即x =1时,y的最小值是4。

【解析】二次函数的最值,配方法的应用。

【分析】(1)分别把表中x的值代入所得函数关系式求出y的对应值填入表中,并画出函数图象即可。

       (2)根据(1)中函数图象的顶点坐标直接得出结论即可。

(3)利用配方法把原式化为平方的形式,再求出其最值即可。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网