题目内容
【题目】如图,OC平分∠AOB,且∠AOB=60°,点P为OC上任意点,PM⊥OA于M,PD∥OA,交OB于D,若OM=3,则PD的长为( )
A.2B.1.5C.3D.2.5
【答案】A
【解析】
过点P作PN⊥OB于N,根据角平分线上的点到角的两边距离相等可得PN=PM,根据角平分线的定义求出∠AOC=30°,然后求出PM,再根据两直线平行,同位角相等可得∠PDN=60°,求出∠DPN=30°,再求解即可.
如图,过点P作PN⊥OB于N,
∵OC平分∠AOB,PM⊥OA,
∴PN=PM,
∵OC平分∠AOB,且∠AOB=60°,
∴∠AOC=∠AOB=×60°=30°,
∵OM=3,
∴PM=3×=,
∵PD∥OA,
∴∠PDN=∠AOB=60°,
∴∠DPN=90°﹣60°=30°,
∴PD=÷=2.
故选:A.
练习册系列答案
相关题目