题目内容
【题目】如图,四边形ABCD中,已知AB=CD,点E、F分别为AD、BC的中点,延长BA、CD,分别交射线FE于P、Q两点.求证:∠BPF=∠CQF.
【答案】证明见解析.
【解析】试题分析:如图,连接BD,作BD的中点M,连接FM、EM.利用三角形中位线定理证得△EMF是等腰三角形,则∠MEF=∠MFE.利用三角形中位线定理、平行线的性质推知∠MEF=∠P,∠MFE=∠CQF.根据等量代换证得∠P=∠CQF;
试题解析:
证明:如图,连接BD,作BD的中点M,连接EM、FM,如图所示:
∵点E是AD的中点,
∴在△ABD中,EM∥AB,EM=AB,
∴∠MEF=∠P,
同理可证:FM∥CD,FM=CD.
∴∠MGH=∠DFH.
又∵AB=CD,
∴EM=FM,
∴∠MEF=∠MFE,
∴∠P=∠CQF.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】某商场计划采购甲、乙、丙三种型号的“格力”牌空调共25台.三种型号的空调进价和售价如下表:
种类价格 | 甲 | 乙 | 丙 |
进价(元/台) | 1600 | 1800 | 2400 |
售价(元/台) | 1800 | 2050 | 2600 |
商场计划投入总资金5万元,所购进的甲、丙型号空调数量相同,乙型号数量不超过甲型号数量的一半.若设购买甲型号空调x台,所有型号空调全部售出后获得的总利润为W元.
(1)求W与x之间的函数关系式.
(2)商场如何采购空调才能获得最大利润?
(3)由于原材料上涨,商场决定将丙型号空调的售价提高a元(a≥100),其余型号售价不变,则商场又该如何采购才能获得最大利润?