题目内容

【题目】如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.

(1)求点C的坐标;

(2)当∠BCP=15°时,求t的值;

(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.

【答案】(1)点C的坐标为(0,3);(2)t的值为4+或4+3;(3)t=1或4或5.6

【解析】试题分析:(1)由∠CBO=45°,∠BOC为直角,得到△BOC为等腰直角三角形,又OB=3,利用等腰直角三角形AOB的性质知OC=OB=3,然后由点Cy轴的正半轴可以确定点C的坐标;
(2)需要对点P的位置进行分类讨论:①当点P在点B右侧时,如图2所示,由∠BCO=45°,用∠BCO-∠BCP求出∠PCO30°,又OC=3,在Rt△POC中,利用锐角三角函数定义及特殊角的三角函数值求出OP的长,由PQ=OQ+OP求出运动的总路程,由速度为1个单位/秒,即可求出此时的时间t;②当点P在点B左侧时,如图3所示,用∠BCO+∠BCP求出∠PCO60°,又OC=3,在Rt△POC中,利用锐角三角函数定义及特殊角的三角函数值求出OP的长,由PQ=OQ+OP求出运动的总路程,由速度为1个单位/秒,即可求出此时的时间t;
(3)当⊙P与四边形ABCD的边(或边所在的直线)相切时,分三种情况考虑:
①当⊙PBC边相切时,利用切线的性质得到BC垂直于CP,可得出∠BCP=90°,由∠BCO=45°,得到∠OCP=45°,即此时△COP为等腰直角三角形,可得出OP=OC,由OC=3,得到OP=3,用OQ-OP求出P运动的路程,即可得出此时的时间t;
②当⊙PCD相切于点C时,PO重合,可得出P运动的路程为OQ的长,求出此时的时间t;
③当⊙PAD相切时,利用切线的性质得到∠DAO=90°,得到此时A为切点,由PC=PA,且PA=9-t,PO=t-4,在Rt△OCP中,利用勾股定理列出关于t的方程,求出方程的解得到此时的时间t.
综上,得到所有满足题意的时间t的值.

试题解析::(1)∵∠BCO=∠CBO=45°,
∴OC=OB=3,
又∵点Cy轴的正半轴上,
∴点C的坐标为(0,3);
(2)分两种情况考虑:
①当点P在点B右侧时,如图2,


若∠BCP=15°,得∠PCO=30°,
PO=COtan30°=,此时t=4+
②当点P在点B左侧时,如图3,


由∠BCP=15°,得∠PCO=60°,
OP=COtan60°=3
此时,t=4+3
∴t的值为4+4+3
(3)由题意知,若⊙P与四边形ABCD的边相切时,有以下三种情况:
①当⊙PBC相切于点C时,有∠BCP=90°,

从而∠OCP=45°,得到OP=3,此时t=1;
②当⊙PCD相切于点C时,有PC⊥CD,即点P与点O重合,此时t=4;

③当⊙PAD相切时,由题意,得∠DAO=90°,

∴点A为切点,如图4,PC2=PA2=(9-t)2,PO2=(t-4)2
于是(9-t)2=(t-4)2+32,即81-18t+t2=t2-8t+16+9,
解得:t=5.6,
∴t的值为145.6.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网