题目内容
【题目】如图,若AB∥CD,EF与AB 、CD分别相交于E、F,EP⊥EF,∠EFD的平分线与EP相交于点P,且∠BEP=40°,求∠EFP的度数.
【答案】25°
【解析】
试题由EP⊥EF,根据垂直的定义可得∠PEF=90°,根据∠BEF=∠BEP+∠PEF求得∠BEF的度数;又因AB∥CD,根据平行线的性质可得∠BEF+∠EFD=180°,从而求得∠EFD的度数,再由角平分线的定义可得∠EFP的度数,最后根据三角形的内角和定理求得∠EPF的度数.
试题解析:
∵EP⊥EF,∴∠PEF=90°.
∵∠BEP=50°,
∴∠BEF=∠BEP+∠PEF=140°.
∵AB∥CD,∴∠BEF+∠EFD=180°.
∴∠EFD=40°.
∵FP平分∠EFD,∴∠EFP=∠EFD=20°.
∵∠PEF+∠EFP+∠EPF=180°,
∴∠EPF=70°
练习册系列答案
相关题目