题目内容
【题目】如图,点为直线上一点,过点作射线,使,将一直角三角板的直角顶点放在点处(),一边在射线上,另一边在直线的下方.
(1)将图1中的三角板绕点逆时针旋转至图2,使一边在的内部,且恰好平分,求的度数;
(2)将图1中的三角板绕点以每秒5的速度沿逆时针方向旋转一周,在旋转的过程中,第秒时,直线恰好平分锐角,求的值;
将图1中的三角板绕点逆时针旋转至图3,使一边在的内部,请探究的值./span>
【答案】(1)35°;(2)11或47;(3)∠AOM-∠NOC=20°.
【解析】
(1)根据角平分线的定义通过计算即可求得∠BON的度数;
(2)当ON的反向延长线平分∠AOC时或当射线ON平分∠AOC时这两种情况分别讨论,根据角平分线的定义以及角的关系进行计算即可;
(3)根据∠MON=90°,∠AOC=70°,分别求得∠AOM=90°-∠AON,∠NOC=70°-∠AON,再根据∠AOM-∠NOC=(90°-∠AON)-(70°-∠AON)进行计算,即可得出∠AOM与∠NOC的数量关系.
解:(1)如图2中,
∵OM平分∠BOC,
∴∠MOC=∠MOB,
又∵∠BOC=110°,
∴∠MOB=55°,
∵∠MON=90°,
∴∠BON=∠MON-∠MOB=35°;
(2)(2)分两种情况:
①如图2,∵∠BOC=110°
∴∠AOC=70°,
当当ON的反向延长线平分∠AOC时,∠AOD=∠COD=35°,
∴∠BON=35°,∠BOM=55°,
即逆时针旋转的角度为55°,
由题意得,5t=55°
解得t=11;
②如图3,当射线ON平分∠AOC时,∠NOA=35°,
∴∠AOM=55°,
即逆时针旋转的角度为:180°+55°=235°,
由题意得,5t=235°,
解得t=47,
综上所述,t=11s或47s时,直线ON恰好平分锐角∠AOC;
故答案为:11或47;
(3)∠AOM-∠NOC=20°.
理由:∵∠MON=90°,∠AOC=70°,
∴∠AOM=90°-∠AON,∠NOC=70°-∠AON,
∴∠AOM-∠NOC=(90°-∠AON)-(70°-∠AON)=20°,
∴∠AOM与∠NOC的数量关系为:∠AOM-∠NOC=20°.