题目内容
【题目】已知是⊙的直径,是⊙的切线,,交⊙于点,是上一点,延长交⊙于点.
(1)如图①,求和的大小;
(2)如图②,当时,求的大小.
【答案】(1) ∠T=40°,∠CDB=40°;(2)∠CDO =15°.
【解析】
试题分析:(1)如图,连接AC,根据切线的性质定理可得∠TAB=90°,即可求得∠T的度数;根据直径所对的圆周角为直角可得∠ACB=90°,即可求得∠CDO的度数. (2)如图,连接AD,在△BCE中,求得∠BCE=∠BEC=65°,根据圆周角定理的推论可得∠BAD=∠BCD=65°,因OA=OD,根据等腰三角形的性质可得∠ODA=∠OAD=65°,即可得∠CDO=∠ODA-∠ADC=15°.
试题解析:(1)如图,连接AC,
∵是⊙的直径,是⊙的切线,
∴AT⊥AB,即∠TAB=90°.
∵,
∴∠T=90°-∠ABT=40°
由是⊙的直径,得∠ACB=90°,
∴∠CAB=90°-∠ABC=40°
∴∠CDB=∠CAB=40°;
(2)如图,连接AD,
在△BCE中,BE=BC,∠EBC=50°,
∴∠BCE=∠BEC=65°,
∴∠BAD=∠BCD=65°
∵OA=OD
∴∠ODA=∠OAD=65°
∵∠ADC=∠ABC=50°
∴∠CDO=∠ODA-∠ADC=15°.
练习册系列答案
相关题目