题目内容
【题目】在Rt△ABC中,∠C=90°,AC=3,BC=4,D是AB上一动点(不与A、B重合),DE⊥AC于点E,DF⊥BC于点F,点D由A向B移动时,矩形DECF的周长变化情况是( )
A. 逐渐减小 B. 逐渐增大 C. 先增大后减小 D. 先减小后增大
【答案】A
【解析】试题分析:设DE=λ,运用相似三角形的性质,将矩形DECF的周长表示为λ的一次函数的形式,运用函数的性质即可解决问题.
解:设DE=λ,DF=μ;
∵DE⊥AC于点E,DF⊥BC于点F,
∴四边形DECF为矩形,
∴CF=DE=λ,CE=DF=μ,
∴矩形DECF的周长η=2λ+2μ;
∵DE∥BC,
∴△ADE∽△ABC,
∴①;同理可证②,
由①+②得:,
∴μ=8﹣
∴η=2λ+16﹣
=+16,
∵<0,
∴η随λ的增大而减小;
∵点D从靠近点A的某一点向点B移动时,λ逐渐变大,
∴矩形DECF的周长η逐渐减小.
故选A.
【题目】杭州市甲、乙两个有名的学校乐团,决定向某服装厂购买同样的演出服.如表是服装厂给出的演出服装的价格表:
购买服装的套数 | 1~39套(含39套) | 40~69套(含69套) | 70套及以上 |
每套服装的价格 | 80元 | 70元 | 60元 |
经调查:两个乐团共85人(甲乐团人数不少于46人),如果分别各自购买演出服,两个乐团共需花费6500元.请回答以下问题:
(1)如果甲、乙两个乐团联合起来购买服装,那么比各自购买服装最多可以节省多少元?
(2)甲、乙两个乐团各有多少名学生?
(3)现从甲乐团抽调a人,从乙乐团抽调b人(要求从每个乐团抽调的人数不少于5人),去儿童福利院献爱心演出,并在演出后每位乐团成员向儿童们进行“心连心活动”;甲乐团每位成员负责5位小朋友,乙乐团每位成员负责3位小朋友.这样恰好使得福利院65位小朋友全部得到“心连心活动”的温暖.请写出所有的抽调方案,并说明理由.